<u>ECE 232</u> <u>Lab1</u> <u>First order circuits</u>

Preliminary Work:

1. Consider the circuit and the input voltage waveform $V_{in}(t)$ (which is a square wave with some DC value) on Figure. Take V₁=1V and V₂=3V.

Figure 1: The circuit Figure 2: The input waveform $V_{in}(t)$ **a.** Obtain the differential equation for the circuit. For the values of f, R and C in Table 1, determine and sketch $V_C(t)$ and $V_R(t)$. Calculate the time constant τ for each case.

	f (kHz)	$R(k\Omega)$	C (nF)
1	2	3.3	4.7
2	2	3.3	10
3	2	68	10

Table1

b. Replace the capacitor in Figure with an indictor L. Obtain the differential equation and for the values of f, R, and L in Table 1, determine and sketch $V_L(t)$ and $V_R(t)$ for the input in part 1. Calculate τ in each case.

f (kHz)	$R(k\Omega)$	L (H)
2	3.3	0.1
2	1.8	0.1
10	3.3	0.1

Table2

c. How can τ be found experimentally from the voltage waveforms seen on oscilloscope screen? *Hint:* Consider the exponential characteristics of voltage waveforms in one interval.

Experimental Work

1. Adjust the square wave output of the function generator as in Preliminary Work part 1. **a.** Set up the circuit on the Figure 1. For the values of f, R and C in the Table 1, observe and plot the AC components of $V_{in}(t)$, $V_C(t)$ and $V_R(t)$, also note the DC levels in each case. Determine the time constant τ of the circuits experimentally.

b. Replace the capacitor C with the inductor L and repeat part 1.a for the values of f, R and C in the Table 2.

Equipment List: Resistors: 1.8kΩ, 3.3kΩ, 68kΩ, Capacitors: 4.7nF, 10nF, Inductors: 100mH